Analysis of Carbon Fiber Reinforced PEEK Hinge Mechanism Articulation Components in a Rotating Hinge Knee Design: A Comparison of In Vitro and Retrieval Findings
نویسندگان
چکیده
Carbon fiber reinforced poly-ether-ether-ketone (CFR-PEEK) represents a promising alternative material for bushings in total knee replacements, after early clinical failures of polyethylene in this application. The objective of the present study was to evaluate the damage modes and the extent of damage observed on CFR-PEEK hinge mechanism articulation components after in vivo service in a rotating hinge knee (RHK) system and to compare the results with corresponding components subjected to in vitro wear tests. Key question was if there were any similarities or differences between in vivo and in vitro damage characteristics. Twelve retrieved RHK systems after an average of 34.9 months in vivo underwent wear damage analysis with focus on the four integrated CFR-PEEK components and distinction between different damage modes and classification with a scoring system. The analysis included visual examination, scanning electron microscopy, and energy dispersive X-ray spectroscopy, as well as surface roughness and profile measurements. The main wear damage modes were comparable between retrieved and in vitro specimens (n = 3), whereby the size of affected area on the retrieved components showed a higher variation. Overall, the retrieved specimens seemed to be slightly heavier damaged which was probably attributable to the more complex loading and kinematic conditions in vivo.
منابع مشابه
Histopathological Analysis of PEEK Wear Particle Effects on the Synovial Tissue of Patients
Introduction. Increasing interest developed in the use of carbon-fiber-reinforced-poly-ether-ether-ketones (CFR-PEEK) as an alternative bearing material in knee arthroplasty. The effects of CFR-PEEK wear in in vitro and animal studies are controversially discussed, as there are no data available concerning human tissue. The aim of this study was to analyze human tissue containing CFR-PEEK as we...
متن کاملROTATING HINGE VERSUS CONSTRAINED CONDYLAR KNEE REPLACEMENT: WHICH ONE IS ACTUALLY MORE CONSTRAINED? A FINITE ELEMENT STUDY
This was Presented in 5th International Congress of Iranian Iranian Society of Knee Surgery, Arthroscopy, and Sports Traumatology (ISKAST), 14-17 Feb 2018- Kish, Iran
متن کاملFlexural Behavior of Reinforced HPFRCC Beams
High Performance Fiber Reinforced Cementitious Composite (HPFRCC) materials exhibit strain hardening behavior with multiple cracking under tensile loading. In this paper, experimental and parametric studies are performed to assess the influence of using HPFRCC material instead of normal concrete in reinforced concrete beams. After calibrating the experimental results, the analytical results inc...
متن کاملEarly Results of a New Rotating Hinge Knee Implant
BACKGROUND Indication for rotating hinge (RH) total knee arthroplasty (TKA) includes primary and revision cases, with contradictory results. The aim of this study was to report prospective early results of a new modular rotating hinge TKA (EnduRo). For this implant several new design features and a new bearing material (carbon-fiber reinforced poly-ether-ether-ketone) have been developed. Furth...
متن کاملPosterior Dislocation of the Hinge-Post Extension in a Rotating Hinge Total Knee Prosthesis
The rotating hinge knee prosthesis is a popular intervention in patients lacking stability with highly constrained total knee arthroplasty. Despite improvements in design, nonmechanical and mechanical complications continue to be a problem. Dislocation of the hinge has been widely described, mainly due to the component fracture. Few reports describe isolated dislocation of the rotating stem. We...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2016 شماره
صفحات -
تاریخ انتشار 2016